

Dimensional Measurement Uncertainty of Computed Tomography Data

Jonathan J O'Hare, Program Manager CT Solutions July 25-26, 2016

Contents

1. The changing manufacturing Environment

- a) Shifting design paradigms
- b) Limitations of traditional CMMs

2. New ways of measuring

- a) Latest in Industrial Computed Tomography (CT)
- b) Influences on measurement uncertainty
- c) Methodologies

3. Importance of correlation

a) How CMMs can be used to provide confidence in CT

4. Conclusions

- a) Summary of results
- b) Best practices

Design Paradigm Shift

• Drivers

- Performance improvement
- Cost reduction

Impact on Design

- Weight reduction
- More Internal features/cavities
- More complex surfaces

Impact on Manufacturing

- New materials: composites, high-strength alloys
- New processes: Additive Manufacturing
- Need for more sophisticated Inspection
 - Design & Process Validation
 - Process Control

More bionic designs

Limitations

Tactile CMM

- Part setup / low deflection fixtures
- Probe setup and stylus design
- Optical CMM Vision System
 - Part surface / reflectivity or translucency
 - Lighting
 - Only 2¹/₂ d, Difficult to see hidden edges
- Multisensor CMM Tactile + Vision System
 - Cost of combined sensors
 - Added complexity for implementation

Typical CMM fixture setup

Multisensor system: (1) WLS, (2) CCD, (3) TTP

Computed Tomography as a Measurement Tool

- CT has improved drastically in recent years
 - Micro-focus x-ray sources
 - Better thermal stability
 - Higher resolution detectors
- Two main classes of technology for measurement:
 - Cone beam / Flat panel detectors
 - Line beam / Linear detectors

Above: YXLON's FF20 CT (cone beam)

CT Influences on Measurement Uncertainty

Workpiece Induced

- Due to material properties and geometry:
- Thermal effects
 - Expansion during measurement*
 - IR absorption of polymers esp. under high magnification
- X-ray effects
 - Too little attenuation
 - Beam hardening
 - Scattering

*workpiece at steady-state temp can be easily compensated.

** helical scanning can avoid this

Instrument Induced

Machine geometry

- Axis position
- Focal spot drift (self heating)
- Image Quality
 - Spatial Resolution
 - Contrast
 - Cone beam angle**

Software Induced

- Finding the Surface
 - Surface mesh approximation
 - Global threshold calculation
- Method of Dimensioning
 - Feature type calculation
 - Analysis procedure

Influences on Measurement Uncertainty

Workpiece Induced

- Due to material properties and geometry:
- Thermal effects
 - Expansion during measurement
 - IR absorption of polymers esp. under high magnification
- X-ray effects
 - Lack of attenuation
 - Beam hardening
 - Scattering

Can be the most significant part of the error budget

Instrument Induced

- Machine geometry
 - Axis position
 - Focal spot drift (self heating)
- Image Quality
 - Spatial Resolution
 - Contrast
 - Cone beam angle

Software Induced

- Finding the Surface
 - Surface mesh approximation
 - Global threshold calculation
- Method of Dimensioning
 - Feature calculation
 - Measurement procedure

Challenges in Finding the True Surface

Conceptual example:

- Single reconstructed image (1 voxel thick)
- Cross-section with varying wall thickness
- Beam hardening reduction applied
- · Yellow box selected for gray value profile

Global Threshold Selection

Orange: favors inside surface boundary

PROFILE OF STACK IMAGE

Challenges in Finding the True Surface

Conceptual example:

- Single reconstructed image (1 voxel thick)
- Cross-section with varying wall thickness
- Beam hardening reduction applied
- · Yellow box selected for gray value profile

Global Threshold Selection

Orange: favors inside surface boundary Red: favors outside surface boundary

Methodologies: Finding the true surface

Local Threshold Calculation

VS.

- Surface boundary locally determined
- Uses greyscale data only around target point

- Requirements:
 - Target point (nominal X,Y,Z)
 - Target vector (I,J,K direction for threshold evaluation)
 - Target threshold (initial condition & error handling)
 - Spatial search limits before and after target point
- Options:
 - Filtering radius :

Uses greyscale data within # voxels around calculated point to filter noise

Global Threshold Calculation

- Surface boundary globally determined
- Uses greyscale data for whole volume (histogram)

- May use half way between peaks
- May optimize threshold by minimizing noise
- Global threshold commonly used for mesh extraction due to computation time

Experiments

- Single points using precision reference objects
 - Precision ruby spheres (diameter and roundness <= 0.0001mm)

#1 precision sphere gauge

- Feature measurements using representative manufactured parts
 - CMM correlation using same point sampling strategies

#2 aluminum hole plate

#3 titanium additive part with varying wall thickness

Experiment #1: Point Sampling Study

Comparative study using precise points on a gauge sphere

- Setup
 - Target centers positioned on a sphere in three directions
 - (17) points evenly distributed around each target position
 - Coordinate system at sphere center
- Procedure
 - Measure sphere with VOXL software using "Auto-Adaptive", local thresholding and "Threshold", global thresholding at halfway between peaks.

Threshold Methodology: Comparative Point Sampling Study

Results

- Radial measurement variation
 - Global Thresholding : 6.8 microns

Local Thresholding : 1.9 microns

- Average error from nominal
 - Global Thresholding : 5.6 microns Local Thresholding : 1.5 microns

Experiment #2: Aluminum hole plate

- CMM correlation for real manufactured parts.
- Comparing attributes of geometric features on an aluminum hole plate

Overall Dimensions: 24mm x 24mm x 4mm

2mm holes

CMM Correlation Study: Feature Geometry Test

Hole Plate

Local Threshold Method

Global Threshold Method (ISO-50)


```
VOLTAGE = 160(kV)
CURRENT = 110(uA)
FOD = 190(mm)
FDD = 500(mm)
INT. TIME = 1500(s)
NUM. IMAGES = 700
```

CONSTANT THRESHOLD: ISO-50 = 0.268

CMM MEASUREMENTS

MAG. = x25TOL. = 0.010 (mm)

Global Threshold Method

Global Threshold Method

Hole Position Using Local Threshold Method

HOLE POSITION ERRORS

4

DN

Hole Position Using Global Threshold Method (ISO-50)

HOLE POSITION ERROR

DN

Which Threshold Provides the Best Overall Results?

の

HOLE #

Experiment #3: Additive manufactured titanium part

- CMM Correlation for real manufactured parts.
- AM titanium generic blade. Varying wall thickness in different directions

Overall Dimensions: 25mm x 15mm x 60mm

Wall Thickness: 0.381mm to 4mm

Analysis methods can make a big difference.

Wall thickness calculation using CMM target points and normal vector information:

Analysis methods can make a big difference.

Wall thickness calculation using CMM target points' minimum distances:

Point-to-Point Correlation with CMM Target Points

(3) Different sampling methods using same points

Above: CMM probe setup

Point-to-Point Correlation with CMM Target Points

Standard deviation for VOXL's *Auto-Adaptive* method to the CMM is

4 microns

Compare to 36 microns difference in standard deviation between ISO surface mesh and CMM

Conclusions:

Global thresholding techniques are insufficient for dimensional measurements

- Single threshold value cannot be optimized for all geometric features at once
- Single threshold value cannot be optimized for different characteristics of the same geometric feature.
- Typical method used for mesh extraction from voxel data.. Beware!.
- Local thresholding techniques show significant improvement for dimensional measurements
 - Must consider target information, algorithm constraints, for consistent results.
 - VOXL's *Auto-Adaptive* measurement mode is an extension of a localized thresholding technique, with a range of advanced user parameters including filtering radius option.

• Measurement methodology can have a large impact on results

- Point sampling strategy critical for reproducible measurements
- Analysis methods will determine the usefulness of the results
- Common point sampling strategies ideal for demonstrating CMM correlation
 - The best way to validate CT inspection process for dimensional measurement

Questions?

Contact:

Jonathan J O'Hare Program Manager/ CT Solutions Hexagon Manufacturing Intelligence 250 Circuit Drive North Kingstown, RI 02818

T: 401.886.2704

